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[1] In this paper we derive analytical solutions to statistical moments for transient
saturated flow in two-dimensional, bounded, randomly heterogeneous porous media. By
perturbation expansions, we first derive partial differential equations governing the zeroth-
order head h(0) and the first-order head term h(1), where orders are in terms of the standard
deviation of the log transmissivity. We then solve h(0) and h(1) analytically, both of
which are expressed as infinite series. The head perturbation h(1) is then used to derive
expressions for autocovariance of the hydraulic head and the cross covariance between the
log transmissivity and head. The expressions for the mean flux and flux covariance
tensor are formulated from the head moments based on Darcy’s law. Using numerical
examples, we demonstrate the convergence of these solutions. We also examine the
accuracy of these first-order solutions by comparing them with solutions from both Monte
Carlo simulations and the numerical moment equation method.

Citation: Lu, Z., and D. Zhang (2005), Analytical solutions to statistical moments for transient flow in two-dimensional, bounded,

randomly heterogeneous media, Water Resour. Res., 41, W01016, doi:10.1029/2004WR003389.

1. Introduction

[2] Geological formations are inherently heterogeneous
and exhibit a high degree of variability in medium properties
such as hydraulic conductivity and porosity. Medium het-
erogeneity has significant impacts on fluid flow and solute
transport in the subsurface. Although these formations are
intrinsically deterministic, we usually have incomplete
knowledge on their properties. As a result, it is common to
treat the medium properties as stochastic processes and solve
the flow and transport problems in randomly heterogeneous
media in a stochastic framework. In the last two decades,
many stochastic theories have been developed to obtain
the statistical moments for fluid flow and solute transport
in such heterogeneous media [e.g., Freeze, 1975; Smith
and Freeze, 1979; Dagan, 1979, 1982, 1989; Dettinger
and Wilson, 1981; Gutjahr and Gelhar, 1981; Mizell et al.,
1982; Gelhar and Axness, 1983; Rubin and Dagan, 1989;
Neuman and Orr, 1993; Gelhar, 1993; Osnes, 1995, 1998;
Tartakovsky and Neuman, 1998; Zhang, 1999; Guadagnini
and Neuman, 1999a, 1999b]. Zhang [2002] reviewed some
techniques used in solving transient flow in heterogeneous
porous media.
[3] Analytical solutions to the statistical moments of satu-

rated flow are only available for some special cases such as
steady state uniform mean flow in an unbounded domain
[Dagan, 1985;Gelhar, 1993;Rubin, 1990;Rubin andDagan,
1992; Zhang and Neuman, 1992] and steady state uniform

mean flow in a rectangular domain [Osnes, 1995, 1998].
Under the assumption of steady state uniformmean flow in an
infinite domain, Dagan [1985] derived an analytical solution
for the head variogram with an exponential covariance
function of the log hydraulic conductivity. Under similar
assumptions, Rubin and Dagan [1992] and Zhang and
Neuman [1992] presented solutions to velocity covariances.
Osnes [1995, 1998] derived analytical solutions to head and
velocity moments for steady state uniform mean flow in a
rectangular domain with a separable exponential covariance
function of the log transmissivity. Recently, Riva et al. [2001]
and Guadagnini et al. [2003] derived analytical solutions for
steady state radial flow in bounded heterogeneous domains.
To our knowledge, analytical solutions for head and velocity
moments for transient flow are not available in the literature.
In this study, we present analytical solutions to head and
velocity covariances for transient flow in a two-dimensional
statistically homogeneous porous medium with a separable
exponential covariance function of the log transmissivity. We
assume that the boundary conditions are deterministic and the
only source of uncertainty is the variability of transmissivity.
It is also assumed that the flow is initially under steady state
and the initial head uncertainty is unknown (to be determined
later) rather than specified in advance.

2. Mathematical Derivation

2.1. Statement of the Problem

[4] We consider transient flow in saturated two-dimen-
sional bounded randomly heterogeneous porous media gov-
erned by the following continuity equation and Darcy’s law
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r � q x; tð Þ ¼ S
@h x; tð Þ

@t
; x 2 W; t > 0 ð1Þ

q x; tð Þ ¼ �T xð Þrh x; tð Þ; ð2Þ

with boundary and initial conditions

h x; tð Þ ¼ H1; x1 ¼ 0; t > 0; ð3aÞ

h x; tð Þ ¼ H2; x1 ¼ L1; t > 0; ð3bÞ

@h x; tð Þ=@x2 ¼ 0; x2 ¼ 0; t > 0; ð3cÞ

@h x; tð Þ=@x2 ¼ 0; x2 ¼ L2; t > 0; ð3dÞ

h x; tð Þ ¼ H0 xð Þ; x 2 W; t ¼ 0; ð3eÞ

where h(x, t) is the hydraulic head, q(x, t) is the specific
discharge, H1 and H2 are prescribed constant heads, H0(x) is
the initial head in the domain W, T is the transmissivity, S is
storativity, x = (x1, x2) is the vector of Cartesian coordinates,
L1 and L2 are the lengths of the flow domain in x1 and x2
directions, and t is time. Here we assume that H1 and H2

are deterministic constants while H0(x) is specified with
uncertainty: H0(x) = hH0(x)i + H0

0(x) where hH0i and H0
0(x)

are respectively the mean and perturbation. It is also
assumed that S is a deterministic constant whereas T is a
spatially correlated stationary random function following
a lognormal distribution, and we work with the log-
transformed variable Y(x) = ln[T(x)] = hYi + Y0(x), where
hYi and Y0(x) are the mean and the perturbation of the log
transmissivity, respectively. Accordingly, the hydraulic head
and flux are also random functions and can be decomposed
as h(x, t) = h(0)(x, t) + h(1)(x, t) + � � �, q(x, t) = q(0)(x, t) +
q(1)(x, t) + � � �, where the order of each term in this series is in
terms of sY, the standard deviation of the log transmissivity.
Our aim is to solve for the statistics (mean and covariance)
of head and flux.

2.2. First-Order Mean Head and Mean Flux

[5] Upon combining (1) and (2), substituting decompo-
sitions of h(x, t), H0(x), and T(x) = exp(Y(x)) � TG[1 +
Y0(x)], where TG is the geometric mean of transmissivity,
into the derived equation with boundary and initial con-
ditions (3), and collecting terms at zeroth order, one obtains
the following equation:

@2h 0ð Þ x; tð Þ
@x21

þ @2h 0ð Þ x; tð Þ
@x22

¼ S

TG

@h 0ð Þ x; tð Þ
@t

; x 2 W; t > 0; ð4Þ

with boundary and initial conditions

h 0ð Þ x; tð Þ ¼ H1; x1 ¼ 0; t > 0; ð5aÞ

h 0ð Þ x; tð Þ ¼ H2; x1 ¼ L1; t > 0; ð5bÞ

@h 0ð Þ x; tð Þ=@x2 ¼ 0; x2 ¼ 0; t > 0; ð5cÞ

@h 0ð Þ x; tð Þ=@x2 ¼ 0; x2 ¼ L2; t > 0; ð5dÞ

h 0ð Þ x; 0ð Þ ¼ hH0 xð Þi; x 2 W: ð5eÞ

Certainly, the first-order transient mean head depends on the
initial mean head. Here we choose a special case: hH0(x)i =

H10 + (H20 � H10)x1/L1, i.e., assuming a steady state initial
condition with initial gradient of J0 = (H10 � H20)/L1. At
time t = 0, the head values at two constant head boundaries
are changed to H1 and H2, respectively. The solution to (4)–
(5) for such a scenario can be expressed as an infinite series
(Appendix A):

h 0ð Þ x; tð Þ ¼ 2

L1

X1
m¼1

sin amx1ð Þ
am

�
H10 � �1ð ÞmH20

h �
e�

TG
S
a2
mt

þ H1 � �1ð ÞmH2ð Þ 1� e�
TG
S
a2
mt

� �i
; ð6Þ

where am = mp/L1, m = 1, 2, � � �. Each term in this series is
a weighted average of the effect of the constant head
boundaries at time t = 0 and t > 0. Utilizing the identitiesP1

k¼1sin(kz)/k = (p � z)/2 for 0 < z < 2p andP1
k¼1(�1)k�1sin(kz)/k = z/2 for �p < z < p, it can be

verified that for t = 0 and t = 1, (6) reduces to h(0)(x, 0) =
H10 + (H20 � H10)x1/L1 and h(0)(x, 1) = H1 + (H2 � H1)x1/
L1. For any time 0 < t < 1, h(0)(x, t) has to be evaluated
numerically. Since sin(amx1) = 0 at two constant head
boundaries x1 = 0 and x1 = L1, the value of any truncated
finite summation of (6) at these two constant head
boundaries will be zero. To avoid this, we may rewrite (6)
in an alternative form:

h 0ð Þ x; tð Þ ¼ H1 þ
H2 � H1

L1
x1 þ

2

L1

X1
m¼1

bm sin amx1ð Þ
am

e�
TG
S
a2
mt; ð7Þ

where bm = (H10 � H1) � (�1)m(H20 � H2). Note that the
terms in the series of (7) are dampened exponentially with a
rate coefficient of TGam

2 /S and thus the solution can be
approximated by keeping only those terms with a high
spectral density. For a large time t, only a few leading terms
are required to approximate the solution because these
leading terms account for most of the spectral density. On
the other hand, for time t ! 0, a large number of terms are
needed to accurately approximate the solution.
[6] Similarly, after substituting decompositions of q(x, t),

h(x, t), and Y(x) into (2) and collecting terms at the zeroth
order, one has

q 0ð Þ x; tð Þ ¼ �TGrh 0ð Þ x; tð Þ; ð8Þ

or, by utilizing (7), one has the following expressions for the
flux components:

q
0ð Þ
1 x; tð Þ ¼ TG J1 �

2

L1

X1
m¼1

bm cos amx1ð Þe�
TG
S
a2
mt

" #

q
0ð Þ
2 x; tð Þ ¼ 0;

ð9Þ

where J1 = (H1 � H2)/L1 is the final steady state mean
hydraulic gradient.

2.3. First-Order Head Perturbations

[7] The equation for the first-order term h(1) reads

@2h 1ð Þ x; tð Þ
@x2i

þ @

@xi
Y 0 xð Þ @h

0ð Þ xð Þ
@xi

	 

¼ S

TG

@h 1ð Þ x; tð Þ
@t

;

x 2 W; t > 0;

ð10Þ
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where summation over repeated index is implied. Boundary
and initial conditions corresponding to (10) are

h 1ð Þ x; tð Þ ¼ 0; x1 ¼ 0 or x1 ¼ L1; t > 0; ð11aÞ

@h 1ð Þ x; tð Þ=@x2 ¼ 0; x2 ¼ 0 or x2 ¼ L2; t > 0; ð11bÞ

h 1ð Þ x; 0ð Þ ¼ H 0
0 xð Þ x 2 W: ð11cÞ

[8] We have to emphasize that the perturbation of the
initial head H0

0(x) depends on the variability of Y(x) and
therefore cannot be arbitrarily assigned. By assuming that the
flow system is initially in steady state, the functional form of
the unknown initial perturbation can be determined later.
Equations (10)–(11) can be solved analytically (Appendix B)
and the solution is

h 1ð Þ x; tð Þ ¼ 4

D

X1
m¼1
n¼0

an sin amx1ð Þ cos bnx2ð Þe�
TG
S

a2
mþb2nð Þt

�
Z
W
H 0

0 x0ð Þ sin amx
0
1

� 
cos bnx

0
2

� 
dx0

þ 4J1

D

X1
m¼1
n¼0

anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

� 1� e�
TG
S

a2
mþb2nð Þt

h i Z
W
Y 0 x0ð Þ cos amx

0
1

� 
� cos bnx

0
2

� 
dx0 � 8TG

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þam

� sin amx1ð Þ cos bnx2ð Þ
Z
W
Y 0 x0ð Þ cos amx

0
1

� 
cos akx

0
1

� 
� cos bnx

0
2

� 
dx0; ð12Þ

where bn = np/L2, n = 0, 1, 2,. . ., an = 1 for n > 0 and an = 1/2
for n = 0, terms bk and Pkmn(t) are defined in Appendix B.
Since Pkmn(0) = 0, it can be verified that h(1)(x, 0) =H0(x). By
taking the limit of (12) as t!1, one obtains the steady state
solution of the head perturbation:

h 1ð Þ x;1ð Þ ¼ 4J1

D

X1
m¼1
n¼0

anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

Z
W
Y 0 x0ð Þ

� cos amx
0
1

� 
cos bnx

0
2

� 
dx0: ð13Þ

In particular, the initial head perturbation H0
0(x) can be

written as

H 0
0 xð Þ ¼ 4J0

D

X1
m¼1
n¼0

anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

Z
W
Y 0 x0ð Þ

� cos amx
0
1

� 
cos bnx

0
2

� 
dx0; ð14Þ

which will be used to formulate the (cross) covariance CYH0

and CH0
that are required in solving for transient head

covariances.

2.4. Steady State Second Moments of Head

[9] The cross covariance between the log transmissivity
and the steady state hydraulic head can be obtained by

writing (13) in terms of a reference point y, multiplying
Y0(x) to the resulting equation, and taking the mean,

CYh x; yð Þ ¼ hY 0 xð Þ h 1ð Þ y;1ð Þi

¼ 4J1

D

X1
m¼1
n¼0

anam sin amy1ð Þ cos bny2ð Þ
a2
m þ b2n

Rmn xð Þ; ð15Þ

where Rmn(x) =
R
WCY(x, x0) cos(amx1

0) cos(bnx2
0)dx0, and

CY(x, x0) = hY 0(x)Y 0(x0)i is the covariance of the log
transmissivity Y. As done by Osnes [1995] and Rubin and
Dagan [1988], we choose CY as a separable exponential
function:

CY x; x0ð Þ ¼ s2Y exp �
x1 � x01
�� ��

l1

�
x2 � x02
�� ��

l2

	 

; ð16Þ

where sY
2 is the variance of Y, and l1 and l2 are the

correlation lengths of Y in x1 and x2 directions, respectively.
For this particular covariance function, Rmn(x) can be found
analytically:

Rmn xð Þ ¼ l1l2s2Y
a2
ml

2
1 þ 1

� 
b2nl

2
2 þ 1

� 
� 2 cos amx1ð Þ � e�x1=l1 � �1ð Þme x1�L1ð Þ=l1
h i
� 2 cos bnx2ð Þ � e�x2=l2 � �1ð Þne x2�L2ð Þ=l2

h i
: ð17Þ

The steady state head covariance can be derived by multi-
plying h(1)(y, 1) to (13), taking the mean, and substituting
(15) into the derived equation

Ch x; yð Þ¼ 16J 21
D2

X1
m;m1¼1
n;n1¼0

�
anan1amam1

sin amx1ð Þ cos bnx2ð Þ sin am1
y1ð Þ cos bn1y2

� 
a2
m þ b2n

� 
a2
m1

þ b2n1
� �

� Qmn
m1n1

; ð18Þ

where

Qmn
m1n1

¼
Z
W
Rm1n1 x0ð Þ cos amx

0
1

� 
cos bnx

0
2

� 
dx0

¼ l1l2s2Y
a2
m1
l2
1 þ 1

� �
b2n1l

2
2 þ 1

� �

� L1dmm1
þ l1

a2
ml

2
1 þ 1

½1þ �1ð Þmþm1 �½ �1ð Þme�L1=l1 � 1�
" #

� dnn1 þ dn0dn10ð ÞL2 þ
l2

b2nl
2
2 þ 1

1þ �1ð Þnþn1 �½ �1ð Þne�L2=l2 � 1
h i" #

ð19Þ

and dij is the Kronecker delta function.
[10] Equation (18) leads to the steady state head variance

s2h xð Þ ¼ 16J 21
D2

X1
m;m1¼1
n;n1¼0

�
anan1amam1

sin amx1ð Þ cos bnx2ð Þ sin am1
x1ð Þ cos bn1x2

� 
a2
m þ b2n

� 
a2
m1

þ b2n1
� �

� Qmn
m1n1

: ð20Þ

Certainly, the expressions for the head covariance and head
variance, i.e., (18) and (20), are much simpler than those of
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Osnes [1995, equations (14)–(15)]. Note that the expres-
sions for the cross covariance hY 0(x)H0

0(y)i and autocovar-
iance CH0

(x, y) can be written similarly as (15) and (18),
simply replacing J1 in these equations by the initial
hydraulic gradient J0.
[11] From (19) and (20), it is seen that the steady state

head variance is proportional to sY
2, as expected. However,

the dependence of the head variance on the correlation
lengths is not obvious. For the case of l1 ! 0 and l2 ! 0,
which corresponds to the case with a white noise covariance
function, it is easy to find from (C7) that Qm1n1

mn ! 0 and
thus the head variance is zero. This is consistent with the
results of Dagan [1985] for an exponential covariance
function in an unbounded domain. For the case with large
correlation lengths, if the field is isotropic, one finds from
(19) that liml1¼l2!0Qm1n1

mn = 0 and the head variance is zero.
As a matter of the fact, the transmissivity field in this case
becomes a random constant, which results in a zero head
variance everywhere in the domain. Unlike the case of an
isotropic covariance function in an unbounded domain, in
which the head variance increases from zero to infinity as
the correlation length increases from zero to infinity, for a
bounded isotropic domain the head variance increases from
zero to a certain value as the correlation length increases
and then decreases to zero again as the correlation length
approaches infinity. This phenomenon has been observed in
the previous study [Zhang and Lu, 2004, Figure 3].
[12] Equations (19) and (20) can also be used to analyze the

behaviors of the head variance for the anisotropic field. For
the case with a fixed l2 and for l1!1, which is the case of
bedding parallel to the mean flow direction, it can be shown
that Qm1n1

mn ! 0 and the head variance is zero. However, for a
fixed l1 and l2! 1 (bedding perpendicular to the mean
flow, the head variance computed from (20) is infinity.

2.5. Transient Second Moments of Head

[13] The transient cross covariance CYh(x; y, t) and Ch(x,
t; y, t) can be derived from (12) as (see Appendix C)

CYh x; y; tð Þ ¼ 4

D

X1
m¼1
n¼0

anam sin amy1ð Þ cos bny2ð Þ
a2
m þ b2n

Rmn xð ÞJmn tð Þ

� 8TG

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þam sin amy1ð Þ cos bny2ð Þ

� Rkmn xð Þ; ð21Þ

Ch x; t; y; tð Þ ¼ 16

D2

X1
m;m1¼1
n;n1¼0

anan1amam1
Qm1n1

mn SC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð ÞJm1n1 tð Þ

� 32TG

D2L1S

X1
m;m1;k1¼1
n;n1¼0

anan1amam1
bk1Pk1m1n1 tð Þ SC

a2
m þ b2n

� Qk1m1n1
mn Jmn tð Þ � 32TG

D2L1S

X1
m;m1;k¼1
n;n1¼0

� anan1amam1
bkPkmn tð ÞSC

a2
m1

þ b2n1
Qkmn

m1n1
Jm1n1 tð Þ þ 64T 2

G

D2L21S
2

�
X1

m;m1;k;k1¼1
n;n1¼0

anan1amam1
bkbk1Pkmn tð ÞPk1m1n1 tð Þ

� SC Qk1m1n1
kmn ; ð22Þ

where

SC ¼ sin amy1ð Þ cos bny2ð Þ sin am1
x1ð Þ cos bn1x2

� 
; ð23Þ

Jmn tð Þ ¼ J1 þ J0 � J1ð Þe�
TG
S

a2
mþb2nð Þt

h i
; ð24Þ

and all other terms are given in Appendix C. By taking the
limit as t ! 1, (21) and (22) reduce to (15) and (18).

2.6. Second Moments of Flux

[14] The first-order flux can be written as

q 1ð Þ x; tð Þ ¼ �TGrh 1ð Þ x; tð Þ þ Y 0 xð Þq 0ð Þ x; tð Þ ð25Þ

or in the component form

q
1ð Þ
i x; tð Þ ¼ �TG

@h 1ð Þ x; tð Þ
@xi

þ Y 0 xð Þq 0ð Þ
i x; tð Þ; i ¼ 1; 2: ð26Þ

Multiplying Y0(y) on (26) and taking the mean yields

CYqi y; x; tð Þ ¼ hY 0 yð Þq 1ð Þ
i x; tð Þi

¼ �TG
@CYh y; x; tð Þ

@xi
þ q

0ð Þ
i x; tð ÞCY x; yð Þ: ð27Þ

More specifically, (27) can be expanded as

CYq1 y; x; tð Þ ¼ q
0ð Þ
1 x; tð ÞCY x; yð Þ � 4TG

D

X1
m¼1
n¼0

� ana
2
m cos amx1ð Þ cos bnx2ð Þ

a2
m þ b2n

Rmn yð ÞJmn tð Þ

þ 8T 2
G

DL1S

X1
m;k¼1
n¼0

anbka2
mPkmn tð Þ cos amx1ð Þ cos bnx2ð Þ

� Rkmn yð Þ ð28Þ

and

CYq2 y; x; tð Þ ¼ 4TG

D

X1
m¼1
n¼0

anambn sin amx1ð Þ sin bnx2ð Þ
a2
m þ b2n

� Rmn yð ÞJmn tð Þ � 8T 2
G

DL1S

X1
m;k¼1
n¼0

anbkambnPkmn tð Þ

� sin amx1ð Þ sin bnx2ð ÞRkmn yð Þ: ð29Þ

The flux covariance qij(x, t; y, t) = hqi(1)(x, t)qj(1)(y, t)i can
be derived from (26):

qij x; t; y; tð Þ ¼ T2
G

@2Ch x; t; y; tð Þ
@xi@yj

� TG q
0ð Þ
j y; tð Þ @CYh y; x; tð Þ

@xi

� TG q
0ð Þ
i x; tð Þ @CYh x; y; tð Þ

@yj
þ q

0ð Þ
i x; tð Þ q 0ð Þ

j y; tð Þ

� CY x; yð Þ; i; j ¼ 1; 2; ð30Þ
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which can be elaborated as

q11 x; t; y; tð Þ ¼ 16T 2
G

D2

X1
m;m1¼1
n;n1¼0

anan1a
2
ma

2
m1
Qm1n1

mn CC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð ÞJm1n1 tð Þ

� 32T 3
G

D2L1S

X1
m;m1;k1¼1
n;n1¼0

anan1a
2
ma

2
m1
bk1Pk1m1n1 tð ÞCC

a2
m þ b2n

� Qk1m1n1
mn Jmn tð Þ � 32T 3

G

D2L1S

X1
m;m1;k¼1
n;n1¼0

�
anan1a

2
ma

2
m1
bkPkmn tð ÞCC

a2
m1

þ b2n1
Qkmn

m1n1
Jm1n1 tð Þ

þ 64T 4
G

D2L21S
2

X1
m;m1;k;k1¼1

n;n1¼0

anan1a
2
ma

2
m1
bkbk1Pkmn tð Þ

� Pk1m1n1 tð ÞCCQk1m1n1
kmn � 4TG q

0ð Þ
1 y; tð Þ
D

X1
m¼1
n¼0

� ana
2
m cos amx1ð Þ cos bnx2ð Þ

a2
m þ b2n

Rmn yð ÞJmn tð Þ

þ 8T2
G q

0ð Þ
1 y; tð Þ

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þa2
m cos amx1ð Þ

� cos bnx2ð ÞRkmn yð Þ � 4TG q
0ð Þ
1 x; tð Þ
D

X1
m¼1
n¼0

� ana
2
m cos amy1ð Þ cos bny2ð Þ

a2
m þ b2n

Rmn xð ÞJmn tð Þ

þ 8T2
G q

0ð Þ
1 x; tð Þ

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þa2
m cos amy1ð Þ

� cos bny2ð ÞRkmn xð Þ þ q
0ð Þ
1 x; tð Þ q 0ð Þ

1 y; tð Þ
� CY x; yð Þ; ð31Þ

q12 x; t; y; tð Þ ¼ � 16T2
G

D2

X1
m;m1¼1
n;n1¼0

anan1ama2
m1
bnQm1n1

mn SC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð Þ

� Jm1n1 tð Þ þ 32T 3
G

D2L1S

X1
m;m1;k1¼1
n;n1¼0

�
anan1ambna2

m1
bk1Pk1m1n1 tð Þ SC

a2
m þ b2n

Qk1m1n1
mn Jmn tð Þ

þ 32T 3
G

D2L1S

X1
m;m1;k¼1
n;n1¼0

anan1ama2
m1
bnbkPkmn tð ÞSC

a2
m1

þ b2n1

� Qkmn
m1n1

Jm1n1 tð Þ � 64T 4
G

D2L21S
2

X1
m;m1;k;k1¼1

n;n1¼0

� anan1ama2
m1
bnbkbk1Pkmn tð ÞPk1m1n1 tð ÞSC Qk1m1n1

kmn

þ 4TG q
0ð Þ
1 x; tð Þ
D

X1
m¼1
n¼0

anambn sin amy1ð Þ sin bny2ð Þ
a2
m þ b2n

� Rmn xð ÞJmn tð Þ � 8T 2
G q

0ð Þ
1 x; tð Þ

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þ

� ambn sin amy1ð Þ sin bny2ð ÞRkmn xð Þ; ð32Þ

and

q22 x; t; y; tð Þ ¼ 16T 2
G

D2

X1
m;m1¼1
n;n1¼0

anan1amam1
bnbn1Q

m1n1
mn SS

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð Þ

� Jm1n1 tð Þ � 32T3
G

D2L1S

X1
m;m1 ;k1¼1
n;n1¼0

�
anan1amam1

bnbn1bk1Pk1m1n1 tð ÞSS
a2
m þ b2n

Qk1m1n1
mn Jmn tð Þ

� 32T 3
G

D2L1S

X1
m;m1;k¼1
n;n1¼0

anan1amam1
bnbn1bkPkmn tð ÞSS

a2
m1

þ b2n1

� Qkmn
m1n1

Jm1n1 tð Þ þ 64T4
G

D2L21S
2

X1
m;m1 ;k;k1¼1

n;n1¼0

� anan1amam1
bnbn1bkbk1Pkmn tð ÞPk1m1n1 tð Þ

� SSQk1m1n1
kmn ; ð33Þ

where

SC ¼ sin amy1ð Þ sin bny2ð Þ cos am1
x1ð Þ cos bn1x2

� 
;

CC ¼ cos amy1ð Þ cos bny2ð Þ cos am1
x1ð Þ cos bn1x2

� 
;

SS ¼ sin amy1ð Þ sin bny2ð Þ sin am1
x1ð Þ sin bn1x2

� 
:

ð34Þ

The expression for q21 has been omitted, because of the fact
q21(x, t; y, t) � q12(y, t; x, t). Since q1(x, 1) = TGJ1 and
Jmn(1) = J1, the steady state flux covariance can be written
from (31) to (33) as

q11 x; yð Þ ¼ 16T 2
GJ

2
1

D2

X1
m;m1¼1
n;n1¼0

anan1a
2
ma

2
m1
Qm1n1

mn

a2
m þ b2n

� 
a2
m1

þ b2n1
� � cos amy1ð Þ

� cos bny2ð Þ cos am1
x1ð Þ cos bn1x2

� 
� 4T 2

GJ
2
1

D

X1
m¼1
n¼0

� ana2
m

a2
m þ b2n

Rmn xð Þ cos amy1ð Þ cos bny2ð Þ½

þ Rmn yð Þ cos amx1ð Þ cos bnx2ð Þ� þ T 2
GJ

2
1 CY x; yð Þ;

ð35Þ

q12 x; yð Þ ¼ � 16T 2
GJ

2
1

D2

X1
m;m1¼1
n;n1¼0

anan1ama2
m1
bnQm1n1

mn

a2
m þ b2n

� 
a2
m1

þ b2n1
� � sin amy1ð Þ

� sin bny2ð Þ cos am1
x1ð Þ cos bn1x2

� 
þ 4T 2

GJ
2
1

D

X1
m¼1
n¼0

� anambn sin amy1ð Þ sin bny2ð Þ
a2
m þ b2n

Rmn xð Þ; ð36Þ

and

q22 x; yð Þ ¼ 16T2
GJ

2
1

D2

X1
m;m1¼1
n;n1¼0

anan1amam1
bnbn1Q

m1n1
mn

a2
m þ b2n

� 
a2
m1

þ b2n1
� � sin amy1ð Þ

� sin bny2ð Þ sin am1
x1ð Þ sin bn1x2

� 
: ð37Þ
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The velocity covariance can be readily formulated from a
simple relationship uij(x, t; y, t) = qij(x, t; y, t)/f(x)/f(y),
where f is the porosity of the porous media and is
considered as a deterministic quantity due to its relatively
small variability.

3. Numerical Examples

[15] In this section, we try to examine the convergence
and the accuracy of the analytical solutions for the first-
order transient mean flow quantities and related (cross)
covariances. We consider a two-dimensional rectangular
domain in a saturated heterogeneous porous medium. The
flow domain for our base case is a square of a size L1 = L2 =
10 (in any consistent length unit), uniformly discretized into
40 � 40 square elements. The no-flow conditions are
prescribed at two lateral boundaries and constant heads
are specified on the left and right boundaries. Initially, the
flow is at steady state with constant heads H10 = 9.5 on the
left boundary and H20 = 9.0 on the right boundary. At time
t = 0, the constant heads on the left and right boundaries are
suddenly changed to H1 = 11.0 and H2 = 10.0, respectively.
The storativity is a deterministic constant S = 0.005. The
mean of the log transmissivity is given as hYi = 0.0 (i.e., the
geometric mean of transmissivity TG = 1.0). The variance
and the correlation lengths of the log transmissivity field for
our base case are sY

2 = 1.0 and l1 = l2 = 1.0. Unless
specifically mentioned, in all examples we will show results
only along the profile x2 = L2/2 = 5.

3.1. Convergence of Analytical Solutions

[16] An important aspect of analytical solutions presented
as infinity series is how fast the solutions converge to their
true solutions, or in other words, how many terms should be
included in truncating the series so that the approximations
to these solutions will have a given accuracy. Many factors,
including the aspect ratio of the flow domain and the
correlation lengths of the log transmissivity field, may
impact the rate of convergence. To investigate this, in
addition to the base case, we design two more cases. For
each case, we truncate each individual summation (each
index) in the analytical solutions to the mean head and the
head variance after N terms, where N = 2, 3, 5, 6, and 10.
Figure 1 illustrates the computed transient mean head at
four times t = 0.0, 0.01, 0.05, and 0.4, using N = 2, 3, and 5.
The figure shows that at time t = 0.4, the flow has
reached the final steady state. From the figure we see that
keeping the first two terms in the summation of h(0)(x) is
very accurate, except for at early time t = 0.01, in which
keeping the first three terms is accurate enough. In all
examples presented in this study, approximating the mean
head with the first three terms in (7) is sufficiently accurate,
and adding more terms does not significantly improve the
accuracy. Mathematical analysis of the expression for
h(0)(x), i.e., (7), reveals that for an extremely small t, a very
large number of terms is needed. However, in general, the
series in (7) converges very fast, and therefore, we will
focus our discussion on the head variance. Figure 2 depicts
the head variance as a function of x1 along the profile x2 =
L2/2 for different values of N. The figure clearly demon-
strates that the rate of convergence depends on the flow
condition. When the flow is close to steady state, for
instance at t = 0.4, approximating the head variance using

N = 3 (i.e., 729 terms in a sixfold summation) will be very
accurate. While at early times, due to the sudden change on
constant head boundary at t = 0, more terms are needed to
approximate the head variance.
[17] To examine the possible effect of the domain geom-

etry (the ratio L1/L2) on the convergence of the solution, we
change the width of the domain to L2 = 2 while keeping
everything else the same as in the base case. Numerical
experiments with different numbers of terms included in the
truncated summations are illustrated in Figure 3, which
depicts the mean head and head variance along the profile
x2 = L2/2 = 1.0. The figure, again, shows that the analytical
solution converges faster when the flow is at or near steady
state. In addition, comparing Figures 2 and 3, one finds that
the head variance increases as the domain becomes nar-
rower in the transverse direction.
[18] In the third example, we increase the correlation

lengths of the log transmissivity to l1 = l2 = 5. The results,
as shown in Figure 4, indicate that an increase of the
correlation length enhances the rate of convergence of the
analytical solution (compared to Figure 2).

3.2. Accuracy of Analytical Solutions

[19] We conduct Monte Carlo (MC) simulations to verify
the accuracy of the first-order analytical solutions for
transient head and its related (cross) covariances. First, we
generate 5,000 two-dimensional unconditional realizations
of the log transmissivity with the separable covariance
function as given in (16), using the random field generator
based on the Karhunen-Loève decomposition, as described
by Zhang and Lu [2004]. The quality of these realizations
has been examined by comparing their sample statistics
(mean, variance, and correlation lengths) with the specified
mean and covariance functions. The comparisons show that
the generated random fields reproduce the specified mean
and covariance functions very well.
[20] For each realization, we solve the steady state flow

equation with the initial constant head H10 = 9.5 and H20 =
9.0 on the left and the right boundaries, using the finite
element heat and mass transfer code (FEHM) of Zyvoloski
et al. [1997]. This steady state head field is then taken as the

Figure 1. Transient mean head computed using different
numbers of terms, N, in truncating infinite series in (7): the
base case.
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initial head H0(x) for the following transient simulation.
Using the same realization, we run the FEHM code again
for a transient simulation with the new constant heads H1 =
11.0 and H2 = 10.0 on the left and right boundaries and
record the head at the following times: t = 0, 0.01, 0.05, and
0.4. This procedure is repeated for all realizations, and the
sample statistics of the transient flow fields, i.e., the mean
predictions of the head and the flux as well as their (cross)
covariances at these times, are computed from realizations.
These flow statistics are considered the ‘‘true’’ solutions that
are used to evaluate the accuracy of the first-order analytical
solutions.
[21] Figure 5a compares the transient mean head hh(x, t)i

computed from Monte Carlo simulations (MC, solid curves)
and that from the first-order (in sY) analytical solution with
N = 10 (ANA, dashed curves) at various times along the
profile x2 = L2/2. It seems from the figure that the mean
head computed from the analytical solution is very close to
the Monte Carlo results, especially at or near steady state.
Also compared in the figure is the first-order mean head
computed from the moment equation method (ME, dash-

dotted curves) [Zhang and Lu, 2004], where the input
covariance function for the ME method is the analytical
expression (16). Figure 5b compares the transient head
variance obtained from the MC simulations, the first-order
analytical solution, and the first-order ME approach at
various times. It is expected that the first-order analytical
solutions should be identical to the results from the first-
order ME method, in the limit that the number of terms, N,
in the truncated finite series of the analytical solutions
approaches infinity. Furthermore, both first-order results
will deviate slightly from the Monte Carlo results, and such
deviations will increase with the increase of the variability
of the log transmissivity. Figure 5 clearly shows that the
analytical solutions are adequately accurate at sY

2 = 1.0,
especially when the flow is at or near steady state.
[22] It is interesting to see from Figure 5b that the head

variance along the profile x2 = L2/2 at both the initial and
final steady state is symmetric (larger head variance at the
final steady state due to a larger hydraulic gradient), while at
any unsteady state the curve is asymmetric. For example,
the head variance along the profile has two peaks at time t =
0.01. This may be due to the variable hydraulic gradient
during the unsteady state. Comparison of Figures 5a and 5b
indicates that the larger peak on the variance curve corre-
sponds to a larger hydraulic gradient on the mean head
curve. Furthermore, because the change of the head vari-
ance from the initial head variance is due to the change of
constant head boundaries at t = 0, the variance change starts
from two constant head boundaries and propagates into the
entire flow domain. As a result, at a time before the effect of
the boundary change reaches the entire domain, the head
variance in some region remains the same as the initial head
variance sH0

2 (x) (e.g., a trough at t = 0.01 in Figure 5b).
[23] We should emphasize here that in our comparisons, it

is assumed that the results from Monte Carlo simulations
are accurate. It is possible to estimate the bounds of errors
around the Monte Carlo results, using the procedure pro-
posed by Ballio and Guadagnini [2004]. For example,
given the number of realizations and a confidence level of
95%, the true head variance sh

2 should satisfy the following
relationship: 0.962Sn

2 � sh
2 � 1.0406Sn

2, where Sn
2 is the

sample variance of head from Monte Carlo simulations.

Figure 3. Transient head variance computed using
different numbers of terms in truncating infinite series in
(22): L2= 2.0.

Figure 2. Transient head variance computed using
different numbers of terms, N, in truncating infinite series
in (22): the base case.

Figure 4. Transient head variance computed using
different numbers of terms in truncating infinite series in
(22): l1= l2= 5.0.
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[24] Figure 6a illustrates the cross covariance CYh(x; x, t)
as a function of x1 obtained from Monte Carlo simulations
(solid curves) and analytical solutions (dashed curves) at
four elapsed times. It is evident that analytical results are in
good agreement with Monte Carlo results. Note that, at
early time, CYh(x; x, t) is much larger than its values at
steady state. This implies that at early time, the effect of the
transmissivity is relatively local, i.e., the transmissivity at
point x has a significant effect on the mean head at the same
point x. Such an effect reduces significantly at later times
because the transmissivity elsewhere in the domain also
impact the mean head at point x.
[25] Figure 6b depicts the cross covariance between the

log transmissivity at the center of domain (L1/2, L2/2) and
the head h(x, t) along the profile x2 = L2/2, as a function of
x1. Again, analytical results are in good agreement with
Monte Carlo results. It is interesting to note that, at both the
initial and the final steady state, CYh along this profile is
antisymmetric and CYh = 0 for Y and h(x, t) at the center of
the domain, due to the particular boundary conditions in our

problem. However, at any transient state, CYh does not
shown any such kind of symmetry.
[26] Figure 7 shows the covariance of head at (x1, L2/2, t)

and (x1, L2/2, t) as a function of x1 and t at two different
times t = 0.00 and t = 0.05, where solid curves stand for the
results from Monte Carlo simulations and dashed curves
from analytical solutions. Note that the head covariance
function between two steady states (t = 0.0 and t = 0.0, or
t = 0.0 and t = 0.4) along the central line of the domain is
symmetric (see the curves for t = 0.0 and t = 0.4 in
Figure 7a). The difference between these two curves is due
to the difference in the magnitude of the hydraulic gradient.
At unsteady state, the pattern of the head covariance
function depends on the spatial locations and elapsed time.
[27] Comparisons of the mean longitudinal flux obtained

from the MC simulations, the analytical solution, and the
ME method are illustrated in Figure 8, and similar compar-
isons for the flux variance are depicted in Figure 9, where
the plots for a later time t = 0.4 are enlarged in inserts for a
detail view. Clearly, Figures 8–9 once again demonstrate

Figure 5. Comparisons of (a) the transient mean head and (b) the transient head variance computed
from Monte Carlo simulations (solid curves), the first-order analytical solution (dashed curves), and the
first-order moment equation method (dash-dotted curves).

Figure 6. Transient cross-covariance (a) between the log transmissivity Y(x1, L2/2) and the hydraulic
head h(x1, L2/2, t) and (b) between the log transmissivity Y(L1/2, L2/2) and the hydraulic head h(x1,
L2/2, t).
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the accuracy of the analytical solutions. In addition, the
transient flux variance could be significantly larger than the
steady state counterpart.

4. Conclusions

[28] This study leads to the following conclusions.
[29] 1. Statistical moments for transient flow in two-

dimensional bounded randomly heterogeneous media are
amenable to analytical solutions. We derive analytical
solutions to the moments (mean and covariance of both
the hydraulic head and the flux) for transient saturated flow
in two-dimensional bounded, randomly heterogeneous po-
rous media, assuming that the flow is initially at steady
state. More specifically, we first obtain partial differential
equations governing the zeroth-order head h(0) and the first-
order head term h(1), using perturbation expansions. We
then solve h(0) and h(1) analytically. The head perturbation
h(1) is used to derive expressions for autocovariance of the
hydraulic head and the cross covariance between the log
transmissivity and the head. Upon solving for the head
moments, the expressions for the mean flux and flux
covariance tensor are formulated based on Darcy’s law.
These solutions are presented as infinite series.
[30] 2. Numerical experiments have been conducted to

evaluate the convergence of these analytical solutions. It has
been shown that the rate of convergence depends on the
flow condition, the aspect ratio of the flow domain (L1/L2),
and the correlation lengths of the transmissivity. When the
flow is at or near steady state, the analytical solutions
converge very fast, and for unsteady flow, more terms in
the truncated finite series are required to approximate
the statistical moments. In addition, a large aspect ratio
enhances the rate of convergence. Furthermore, large cor-
relation lengths lead to fast convergence. Finally, the
solutions for the mean quantities converge faster than do
the solutions for the second moments.
[31] 3. The accuracy of these first-order analytical

solutions has been examined by comparing them with
solutions from both Monte Carlo simulations and the
numerical moment equation method. The numerical
experiments clearly show that the first-order analytical
solutions are adequately accurate at least for sY

2 = 1.0.

[32] 4. The initial steady state uncertainty on the head in
this study is determined rather than arbitrarily prescribed,
under the assumption that the variability of the log
permeability is the only source of uncertainty. This allows
us to apply the analytical solutions recursively if needed
(e.g., owing to changes on boundary conditions): the
solved steady state solutions can be further taken as the
initial condition to predict responses of flow moments due
to such changes.

Appendix A: Zeroth-Order Mean Head h(0)(x, t)

[33] Here we briefly outline the procedure for solving
the following equation for the zeroth-order mean head
h(0)(x, t):

@2h 0ð Þ x; tð Þ
@x21

þ @2h 0ð Þ x; tð Þ
@x22

¼ S

TG

@h 0ð Þ x; tð Þ
@t

; ðA1Þ

Figure 7. Transient head covariance between head h(x, t) and h(x,t) as a function of x1 and time t along
x2 = L2/2 for (a) t = 0.0 and (b) t = 0.05.

Figure 8. Comparisons of the transient mean longitudinal
flux computed from Monte Carlo simulations (solid curves),
the first-order analytical solution (dashed curves), and the
first-order moment equation method (dash-dotted curves).
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with boundary conditions and initial conditions as shown
in (5a)–(5e). Under the given boundary conditions, by
using an integral transformation [Özişik, 1989],

h* am; bn; tð Þ ¼
Z
W
K am; x1ð ÞK bn; x2ð Þ h 0ð Þ x; tð Þ d x; ðA2Þ

where kernels

K am; x1ð Þ ¼
ffiffiffiffiffi
2

L1

r
sin amx1ð Þ; ðA3Þ

K bn; x2ð Þ ¼

ffiffiffiffiffi
2

L2

r
cos bnx2ð Þ if n 6¼ 0;ffiffiffiffiffi

1

L2

r
if n ¼ 0;

;

8>>><
>>>:

ðA4Þ

and am = mp/L1, m = 1, 2,� � �, bn = np/L2, n = 0, 1, � � �, (A1)
is transformed to a first-order ordinary differential equation,

dh* am; bn; tð Þ
dt

þ TG

S
a2
m þ b2n

� 
h* am; bn; tð Þ ¼ A am; bn; tð Þ; ðA5Þ

with the initial condition

F* am; bnð Þ ¼
Z
W
K am; x1ð ÞK bn; x2ð Þ hH0 xð Þi dx; ðA6Þ

which is the transformation of the initial condition (5e). It
should be noted that the integral transformation presented in
(A2)–(A4) can be considered as the Fourier transformation
in the two-dimensional space, by which the partial
differential equation (A1) is transformed into an ordinary
differential equation of the Fourier coefficients, i.e., (A5).
The term on the right-hand side of (A5) is related to
boundary conditions of the original zeroth-order equation:

A am; bn; tð Þ ¼ TG

S

dK am; x1ð Þ
dx1

����
x1¼0

Z L2

x2¼0

K bn; x2ð ÞH1dx2

"

þ dK am; x1ð Þ
dx1

����
x1¼L1

Z L2

x2¼0

K bn; x2ð ÞH2 dx2

#

¼

0 if n 6¼ 0;

TG

S

ffiffiffiffiffiffiffi
2L2

L1

r
am H1 � �1ð ÞmH2ð Þ if n ¼ 0;

:

8>><
>>: ðA7Þ

Equation (A5) with the initial condition (A6) can be solved
easily:

h* am; bn; tð Þ ¼ F* am; bnð Þ þ
Z t

t0¼0

e
TG
S

a2
mþb2nð Þt0A am; bn; t

0ð Þdt0;

ðA8Þ

and the solution for h(0)(x, t) can be derived from back
transformation of h*(am, bn, t):

h 0ð Þ x; tð Þ ¼
X1
m¼1

X1
n¼0

e�
TG
S

a2
mþb2nð Þt K am; x1ð ÞK bn; x2ð Þh* am; bn; tð Þ

¼
X1
m¼1

X1
n¼0

e�
TG
S

a2
mþb2nð Þt K am; x1ð ÞK bn; x2ð Þ

Z
W
K am; x

0
1

� 

� K bn; x
0
2

� 
hH0 x0ð Þi dx0 þ 2

L1

X1
m¼1

sin amx1ð Þ
am

� H1 � �1ð ÞmH2ð Þ 1� e�
TG
S
a2
mt

� �
: ðA9Þ

Assuming hH0(x)i = H10 + (H20 � H10) x1/L1, (A9) reduces
to

h 0ð Þ x; tð Þ ¼ 2

L1

X1
m¼1

sin amx1ð Þ
am

H10 � �1ð ÞmH20ð Þe�
TG
S
a2
mt

h

þ H1 � �1ð ÞmH2ð Þ 1� e�
TG
S
a2
mt

� �i
: ðA10Þ

For boundary conditions other than those shown in (5a)–
(5d), transformations similar to (A2) can be used upon
replacing with appropriate kernels [Özişik, 1989].

Appendix B: Head Perturbation h0(x, t)

[34] Perturbation term h(1)(x, t) reads as

@2h 1ð Þ x; tð Þ
@x2i

þ @

@xi
Y 0 xð Þ @h

0ð Þ x; tð Þ
@xi

	 

¼ S

TG

@h 1ð Þ x; tð Þ
@t

; ðB1Þ

with boundary conditions and initial conditions as shown in
(11). Similarly, using an integral transformation [Özişik,
1989],

h* am; bn; tð Þ ¼
Z
W
K am; x1ð ÞK bn; x2ð Þ h 1ð Þ x; tð Þ d x; ðB2Þ

Figure 9. Comparisons of (a) the longitudinal flux variance and (b) the transverse flux variance
computed from Monte Carlo simulations (solid curves), the first-order analytical solution (dashed
curves), and the first-order moment equation method (dash-dotted curves).
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where kernels are given in (A3)–(A4), (B1) is transformed
to a first-order ordinary differential equation,

dh* am; bn; tð Þ
dt

þ TG

S
a2
m þ b2n

� 
h* am; bn; tð Þ ¼ A am; bn; tð Þ; ðB3Þ

with the initial condition F*(am, bn) =
R
WK(am, x1)K(bn,

x2)H0
0(x)dx. The solution to (B3) can be formally expressed

as

h* am; bn; tð Þ ¼ F* am; bnð Þ þ
Z t

t0¼0

e
TG
S

a2
mþb2nð Þt0A am; bn; t

0ð Þdt0;

ðB4Þ

and the solution for h(1)(x, t) can be derived from the back
transformation of h*(am, bn, t):

h 1ð Þ x; tð Þ ¼
X1
m¼1

X1
n¼0

e�
TG
S

a2
mþb2nð Þt K am; x1ð ÞK bn; x2ð Þh* am; bn; tð Þ:

ðB5Þ

[35] The term on the right-hand side of (B3) is related to
boundary conditions for h(1) and the source term, i.e., the
second term on the left-hand side of (B1):

A am; bn; tð Þ ¼ TG

S

Z
W
K am; x1ð ÞK bn; x2ð Þ @

@xi
Y 0 xð Þ @h

0ð Þ x; tð Þ
@xi

	 

� d x: ðB6Þ

Substituting h(0)(x, t) into (B6) and carrying out integration
yields

A am; bn; tð Þ ¼ 2J1TGamffiffiffiffiffiffiffiffiffiffi
L1L2

p
S

Z
W
Y 0 x0ð Þ cos amx

0
1

� 
cos bnx

0
2

� 
dx0

� 4TGam

L1
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
S

X1
k¼1

bke
�TG

S
a2
k
t

Z
W
Y 0 x0ð Þ cos amx

0
1

� 
� cos akx

0
1

� 
cos bnx

0
2

� 
dx0 ðB7Þ

for n 6¼ 0 and

A am; b0; tð Þ ¼
ffiffiffi
2

p
J1TGamffiffiffiffiffiffiffiffiffiffi
L1L2

p
S

Z
W
Y 0 x0ð Þ cos amx

0
1

� 
dx0 � 2

ffiffiffi
2

p
TGam

L1
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
S

�
X1
k¼1

bke
�TG

S
a2
k
t

Z
W
Y 0 x0ð Þ cos amx

0
1

� 
cos akx

0
1

� 
dx0;

ðB8Þ

for n = 0. Substituting A(am, bn, t) and F*(am, bn) into (B4)
and combining the latter with (B5), one obtains the solution
for h(1)(x, t):

h 1ð Þ x; tð Þ ¼ 4

D

X1
m¼1
n¼0

an sin amx1ð Þ cos bnx2ð Þe�
TG
S

a2
mþb2nð Þt

Z
W
H 0

0 x0ð Þ

� sin amx
0
1

� 
cos bnx

0
2

� 
dx0 þ 4J1

D

X1
m¼1
n¼0

� anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

1� e�
TG
S

a2
mþb2nð Þt

h i Z
W
Y 0 x0ð Þ

� cos amx
0
1

� 
cos bnx

0
2

� 
dx0 � 8TG

DL1S

X1
m;k¼1
n¼0

� anbkPkmn tð Þam sin amx1ð Þ cos bnx2ð Þ
Z
W
Y 0 x0ð Þ cos

� amx
0
1

� 
cos akx

0
1

� 
cos bnx

0
2

� 
dx0; ðB9Þ

where D = L1L2, an = 1 for n � 1 and an = 1/2 for n = 0 and

Pkmn tð Þ ¼
S
TG

e
�
TG
S
a2
k
t�e

�
TG
S

a2mþb2nð Þt
a2
mþb2n�a2

k

; if a2
k 6¼ a2

m þ b2n;

t e�
TG
S

a2
mþb2nð Þt; if a2

k ¼ a2
m þ b2n:

:

8><
>: ðB10Þ

The steady state solution of the head perturbation can be
derived by taking the limit of (B9) as t ! 1:

h 1ð Þ x;1ð Þ ¼ 4J1

D

X1
m¼1
n¼0

anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

Z
W
Y 0 x0ð Þ cos

� amx
0
1

� 
cos bnx

0
2

� 
dx0: ðB11Þ

Appendix C: Head Covariance

[36] Equation (B9) and taking ensemble mean yields an
expression for head covariance:

Ch x; t; y; tð Þ ¼ hh 1ð Þ x; tð Þ h 1ð Þ y; tð Þi

¼ 4

D

X1
m¼1
n¼0

an sin amx1ð Þ cos bnx2ð Þe�
TG
S

a2
mþb2nð Þt

Z
W

� hH 0
0 x0ð Þh 1ð Þ y; tð Þi sin amx

0
1

� 
cos bnx

0
2

� 
dx0

þ 4J1

D

X1
m¼1
n¼0

anam sin amx1ð Þ cos bnx2ð Þ
a2
m þ b2n

� 1� e�
TG
S

a2
mþb2nð Þt

h i Z
W
CYh x0; y; tð Þ cos amx

0
1

� 
� cos bnx

0
2

� 
dx0 � 8TG

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þam

� sin amx1ð Þ cos bnx2ð Þ
Z
W
CYh x0; y; tð Þ

� cos amx
0
1

� 
cos akx

0
1

� 
cos bnx

0
2

� 
dx0: ðC1Þ

Here the cross covariance between head at space-time (y, t)
and initial head at location x, hH0

0(x)h(1)(y, t)i, can be
derived by rewriting (B9) in terms of (y, t), multiplying
H0

0(x0) to the derived equation, and taking the mean:

CH0h x; y; tð Þ ¼ hH0 xð Þ h 1ð Þ y; tð Þi

¼ 4

D

X1
m¼1
n¼0

an sin amy1ð Þ cos bny2ð Þe�
TG
S

a2
mþb2nð Þt

Z
W

� CH0
x0; xð Þ sin amx

0
1

� 
cos bnx

0
2

� 
dx0 þ 4J1

D

X1
m¼1
n¼0

� anam sin amy1ð Þ cos bny2ð Þ
a2
m þ b2n

1� e�
TG
S

a2
mþb2nð Þt

h i Z
W

� CYH0
x0; xð Þ cos amx

0
1

� 
cos bnx

0
2

� 
dx0 � 8TG

DL1S

�
X1
m;k¼1
n¼0

anbkPkmn tð Þam sin amy1ð Þ cos bny2ð Þ
Z
W

� CYH0
x0; xð Þ cos amx

0
1

� 
cos akx

0
1

� 
cos bnx

0
2

� 
dx0:

ðC2Þ

As mentioned early, we assume that the flow is initially at
steady state and the perturbation of the initial head H0

0(x) is
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determined from the steady state condition. Therefore
CYH0

(x0, x) and CH0
(x0, x) can be obtained by replacing J1

in (15) and (18) by J0, the initial hydraulic gradient.
Substituting CYH0

and CH0
into (C2) and carrying out

integrations, one has

CH0h x; y; tð Þ ¼ hH0 xð Þ h 1ð Þ y; tð Þi

¼ 16J0

D2

X1
m;m1¼1
n;n1¼0

anan1amam1
Qmn

m1n1
SC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð Þ

� 32J0TG

D2L1S

X1
m;m1;k¼1

n;n1¼0

anan1bkPkmn tð Þamam1
Qkmn

m1n1
SC

a2
m1

þ b2n1
� � ;

ðC3Þ

where

SC ¼ sin amy1ð Þ cos bny2ð Þ sin am1
x1ð Þ cos bn1x2

� 
; ðC4Þ

Jmn tð Þ ¼ J1 þ J0 � J1ð Þe�
TG
S

a2
mþb2nð Þt

h i
; ðC5Þ

Rm1n1 xð Þ ¼
Z
W
CY x; x0ð Þ cos am1

x01
� 

cos bn1x
0
2

� 
dx0

¼ l1l2s2Y
a2
m1
l2
1 þ 1

� �
b2n1l

2
2 þ 1

� �
� 2 cos am1

x1ð Þ � e�x1=l1 � �1ð Þm1e x1�L1ð Þ=l1

h i
� 2 cos bn1x2

� 
� e�x2=l2 � �1ð Þn1e x2�L2ð Þ=l2

h i
; ðC6Þ

Qmn
m1n1

¼
Z
W
Rm1n1 xð Þ cos amx1ð Þ cos bnx2ð Þdx

¼ l1l2s2Y
a2
m1
l2
1 þ 1

� �
b2n1l

2
2 þ 1

� �

�
"
L1dmm1

þ l1

a2
ml

2
1 þ 1

1þ �1ð Þmþm1
� 

� �1ð Þme�L1=l1 � 1
� �#"

L2 dnn1 þ dn0dn10ð Þ

þ l2

b2nl
2
2 þ 1

1þ �1ð Þnþn1
� 

�1ð Þne�L2=l2 � 1
� �#

; ðC7Þ

Qkmn
m1n1

¼
Z
W
Rm1n1 xð Þ cos akx1ð Þ cos amx1ð Þ cos bnx2ð Þdx

¼ l1l2s2Y
2 a2

m1
l2
1 þ 1

� �
b2n1l

2
2 þ 1

� �
� L1 dm1;mþk þ dm;m1þk þ dk;mþm1

� �
þ l1 h�mk þ hþmk

� 
1þ �1ð Þmþm1
� 

�1ð Þme�L1=l1 � 1
� �i

� L2 dnn1 þ dn0dn10ð Þ þ l2

b2nl
2
2 þ 1

1þ �1ð Þnþn1
� "

� �1ð Þne�L2=l2 � 1
� �i

; ðC8Þ

and hmk
� = [(am � ak)

2l1
2 + 1]�1, hmk

+ = [(am + ak)
2l1

2 +
1]�1.

[37] Similarly, the cross covariance CYh(x
0; y, t) =

hY0(x)h(1)(y, t)i can be derived as

CYh x; y; tð Þ ¼ 4

D

X1
m¼1
n¼0

anam sin amy1ð Þ cos bny2ð Þ
a2
m þ b2n

Rmn xð ÞJmn tð Þ

� 8TG

DL1S

X1
m;k¼1
n¼0

anbkPkmn tð Þam sin amy1ð Þ cos bny2ð Þ

� Rkmn xð Þ; ðC9Þ

where

Rkmn xð Þ ¼
Z
W
CY x0; xð Þ cos amx

0
1

� 
cos akx

0
1

� 
cos bnx

0
2

� 
dx0

¼ l1l2s2Y
2 b2nl

2
2 þ 1

� 
� 2 hþmk cos½ am þ akð Þx1� þ 2 h�mk cos½ am � akð Þx1�
�
� hþmk þ h�mk
� 

e�x1=l1 þ �1ð Þme x1�L1ð Þ=l1

h io
� 2 cos bnx2ð Þ � e�x2=l2 � �1ð Þne x2�L2ð Þ=l2
h i

: ðC10Þ

After substituting CH0h
(x; y, t) and CYh(x; y, t) into (C1)

and carrying out integrations gives

Ch x; t; y; tð Þ ¼ 16

D2

X1
m;m1¼1
n;n1¼0

anan1amam1
Qm1n1

mn SC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � Jmn tð ÞJm1n1 tð Þ

� 32TG

D2L1S

X1
m;m1;k1¼1
n;n1¼0

� anan1amam1
bk1Pk1m1n1 tð Þ SC

a2
m þ b2n

Qk1m1n1
mn Jmn tð Þ

� 32TG

D2L1S

X1
m;m1;k¼1
n;n1¼0

anan1amam1
bkPkmn tð ÞSC

a2
m1

þ b2n1

� Qkmn
m1n1

Jm1n1 tð Þ þ 64T 2
G

D2L21S
2

X1
m;m1;k;k1¼1

n;n1¼0

� anan1amam1
bkbk1Pkmn tð ÞPk1m1n1 tð ÞSC Qk1m1n1

kmn ;

ðC11Þ

where

Qk1m1n1
kmn ¼

Z
W
Rkmn xð Þ cos ak1x1ð Þ cos am1

x1ð Þ cos bn1x2
� 

dx

¼ l1l2s2Y
4 b2nl

2
2 þ 1

�  �L1hþmk dmþk;m1þk1 þ dk1;mþkþm1

�
þ dm1;mþkþk1Þ þ L1h�mk dk;mþm1þk1 þ dm;kþm1þk1

�
þ dmþm1;kþk1 þ dmþk1;m1þkÞ þ l1 h�mk þ hþmk

� 
� h�m1k1

þ hþm1k1

� �
1þ �1ð Þmþk

� �
� �1ð Þm1þk1e�L1=l1 � 1
� ���

L2 dnn1 þ dn0dn10ð Þ

þ l2

b2n1l
2
2 þ 1

1þ �1ð Þnþn1
� 

�1ð Þn1e�L2=l2 � 1
� ��

:

ðC12Þ
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In particular, letting t = 1 and t = 1, we obtain the steady
state head variance

Ch x; yð Þ ¼ 16J 21
D2

X1
m;m1¼1
n;n1¼0

anan1amam1
Qm1n1

mn SC

a2
m þ b2n

� 
a2
m1

þ b2n1
� � : ðC13Þ
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